
On spin-squeezed states and their application to semi-classical kink dynamics in magnetic

chains

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 3083

(http://iopscience.iop.org/0953-8984/1/19/003)

Download details:

IP Address: 94.79.44.176

The article was downloaded on 10/05/2010 at 18:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/19
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 1 (1989) 3083-3094. Printed in the UK 

On spin-squeezed states and their application to 
semi-classical kink dynamics in magnetic chains 

H Frahmt and J A Holyst$ 
Institut fur Theoretische Physik, Universitat Hannover, D-3000 Hannover 1, Federal 
Republic of Germany 

Received 16 May 1988, in final form 22 September 1988 

Abstract. We introduce an extension of the Radcliffe spin-coherent state approach which 
incorporates squeezing effects to analyse semi-classical equations of motion for spin chains 
with different symmetries. A kink-soliton instability against fluctuations in the complex 
squeeze parameter is found and quantum corrections to the kink energy are estimated. 

1. Introduction 

Quasi-one-dimensional magnets are widely used to gain an understanding of non-linear 
excitations in solids (Lovesey et a1 1984, Bishop et aZ1987). In the classical continuum 
limit some special models have been identified with completely integrable soliton- 
bearing classical field theories (Tjon and Wright 1977, Fogedby 1980). For other systems 
where a complete set of solutions has not been found at least special solitary solutions 
exist (Mikeska 1978,1980). 

To include quantum effects in the description of the latter class of systems semi- 
classical methods have to be applied. WKB quantisation of the classical solitary excitations 
can be used to calculate their energy in perturbation theory (in asystem of spins of length 
S the small parameter is K ~ / S )  (Mikeska 1982). A different approach neglects the 
evolution of off-diagonal elements in a basis of states with a well defined classical limit 
(S+ m) to general semi-classical equations of motion for the spin chain. Balakrishnan 
and Bishop (1985) used the spin-coherent states basis introduced by Radcliffe (1971) to 
obtain soliton solutions for the isotropic Heisenberg spin chain and to calculate the 
soliton energy-momentum relation within this approach. The extension of their results 
to a true quantum regime [ S  o(l)]  leads to some criticism (Haldane 1986) but in the 
semi-classical regime the approximations made can be justified. 

In this paper we present an extension of Radcliffe’s concept of the spin-coherent 
states as well as of the work of Balakrishnan and Bishop: Introducing an additional 
parameter which allows for a dynamical squeezing of the spin states we obtain 1/S 
corrections to the classical equations of motion and one further equation for the complex 
squeeze parameter. Similar approaches have proved to be successful in the field of 
quantum optics for the description of non-classical properties of light (Pike and Sarkar 
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1986) and in the investigation of semi-classical properties of quantum systems that show 
chaotic behaviour in their classical limit (Frahm and Mikeska 1985). 

Our paper is organised as follows: in 0 2 we give the definition of the spin-squeezed 
states and describe their main properties. In 89 3 and 4 we derive the semi-classical 
equations of motion for different spin chain models and analyse the stability of the 
classical soliton solutions against quantum effects. In 8 5 we calculate the energy of these 
excitations to order 1/S within our approach to compare our results with others obtained 
previously. 

2. Formulation of the approach 

For the description of a quantum spin system of N spins the dynamical equations have 
to be solved in a Hilbert space of dimension (2s + 1)". However, in the classical limit 
(namely S+ m )  each spin can be parametrised by two angles q ,  19 only: 

s = S{cosq COSO, sinq cos6, sin@} (2.1) 
where $ = [S (S  + 1)]1'2 is the modulus of the spin vector. Thus in the semi-classical 
regime a reduction of the number of variables should be possible by considering certain 
quasi-classical states in the Hilbert space only. 

A prototype of such a class of quantum states are the well known spin-coherent states 
(Radcliffe 1971) for a single spin. The classicalvariables q and 6are  used to parametrise 
an overcomplete set of states 

16, q) = exp(-iqS') expIi(6 - n / 2 ) S j ]  1s) (2.2) 
with S'IS) = SlS) and 0 Q q s 2n, -n/2 < 6s n/2 (we use h = 1 throughout this 
paper). The classical limit within this formulation is achieved by taking diagonal matrix 
elements only where linear functions of the spin operators give classical expectation 
values: 

(the difference in the factors S / s  in (2.1) and (2 .3)  disappears in the classical limit 

Diagonal matrix elements taken with non-linear expressions in spin operators give 

(6,  q l S / 6 ,  q) = S{cosq cos6, sinq cos6, sine} (2 .3 )  

S+ x ) .  

corrections of order 1/S, e.g., 

(6,  q1 ( S z > 2  16, q) = S2[sin26 + (1/2S)  COS'^]. (2.4) 
These 1/S corrections as compared with the equivalent classical expressions give rise to 
a renormalisation of the constants that appear in the dynamical equations. However, 
this ansatz gives only a small part of the information on the evolution of the quantum 
system since the classical angles qj and 6 are the only degrees of freedom. 

For a more comprehensive inclusion of these effects we introduce spin-squeezed 
states (sss) in the following where an additional variable is used to take into account the 
dynamical distortion of the Radcliffe coherent states. 

Following Radcliffe's construction of the spin-coherent states we first consider the 
ground-state squeezing of an harmonic oscillator. In coordinate representation the 
squeezed state reads [Re(T) > 01: 

($) = [ ~ ( r ) ]  - (U*)  exp[ - ( r / 2 ) x 2 ]  (2 .5)  
where /r = 1) = 10) is the ground state of the HamiltonianH = p 2 / 2  + x2/2. To construct 
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the operator U, that generates Ir) from (0) 

ur 10) = IO (2.6) 

IT) = E c n  In> (2.7) 

equation (2.5) has to be expanded into the harmonic oscillator eigenstates: 

n 

where ( H ,  are the Hermite polynomials): 

(2.8) 

From symmetry we have cZnf l  = 0. The remaining integrals are easily evaluated giving 

With the harmonic oscillator raising operator a’ a closed expression for Ur can be found 
from (2.7): 

ur = [ N ( T ) ] - ( ” ~ )  exp{i[(I - r)/(i + r ) ] (~+)~} .  (2.10) 

This operator is used in quantum optics for the description of squeezed photon states 
(see Pike and Sarkar 1986). 

We now introduce an analogous ansatz for the squeezing operator for the spin- 
coherent ‘ground state’ IS) in the form: 

~ ( a )  = [ N ( U ) ] - ( ’ / ~ )  exp[(a/4~)  ( s - ) ~ ]  (2.11) 

(a  E C is our squeezing parameter) which gives the following for the sss 

(2.12) 

Obviously a = 0 corresponds to the normal coherent spin state. The normalisation of la) 
gives: 

(2n)!  (2S) !  s 

= 5 (n!>2 (2s - 2n)! 4s 
(2.13) 

For every finite value of S this is a polynomial in lul. However, since we are especially 
interested in the semi-classical limit S - 2  x we can give an approximate expression for 
N ( a )  which is valid in the case of moderate squeezing. Assuming that the terms in (2.13) 
vanish sufficiently fast, e.g., la1 < 1 we can use n < S in each term which yields 

(2.14) 

Next one has to calculate expectation values of spin operators within the sss approach. 
They can be written in terms of derivatives of the generating function (2.13) (or (2.14) 
in the semi-classical regime) giving e.g., 

(uIS‘IU) = S - El (ais. la) = (alSY la) = 0 

(UI(S‘)’~U) = S2 - (2s - 1)EI + E2 

( ~ l ( S ” > ~ l a )  = [S  + (2s - 1)E, - E2]/2 + S Re(a)El/la12 (2.15) 
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\? Figure 1. Probabilitv distribution P ( 8 ,  u j )  = 

(6) a > 0. 

( U ~ ( S Y ) ~ / U )  = [S + (2s  - 1)E, - E 2 ] / 2  - S Re(a)E,/la/2 
(alS"Sy + SYS" la) = 2SIm(a)E,/la/2 

where 

E k  = ( l / N )  l ~ l ~ ( d ~ / d l a ( ~ ) N .  (2.16) 
From equations (2.15) the action of the squeeze parameter a is easily seen: The 

modulus of a determines the amount of squeezing while different choices of the phase 
a of a lead to different orientations of the squeezed 'wave-packet' (a change in a by n 
is equivalent to a rotation of the state about the z-axis by n/2). In figure 1 the effect of 
the squeezing operator U(a)  is shown by visualisation of the probability distribution of 
the state la) on the sphere of accessible spin directions. Note that ( ~ l ( S " ) ~ l u )  ( U ~ ( S Y ) ~ / U >  = 
S2/4 + o((al'). An equivalent equation holds for the harmonic oscillator squeezed states 
for arbitrary values of the squeeze parameter (see Pike and Sarkar 1986). The o ( ~ u ( ~ )  
corrections as well as the decrease of the expectation value (S") in the sss is a consequence 
of the spherical symmetry of the spin phase space and may be used as a measure for the 
validity of the description of the quantum system in terms of these states in the semi- 
classical limit: As soon as E ,  becomes of the order of S (namely the corrections to (S") 
become large) more details of the quantum mechanical nature of the system have to be 
taken into account for a complete description. 

All the results given above have been calculated for the sss (2.12) pointed in z-  
direction, e.g., (alSla)lle,. However, any other state can be obtained by rotation of this 
one. This gives a three parameter family of quantum states: 

(2.17) 
which we shall use for the description of semi-classical spin dynamics in the following. 
Expectation values of spin operators within these states are obtained from (2.15) by 
rotation, e.g., 

16, q ,  a)  = exp(-iqSZ) exp[i(6 - n / 2 ) S ~ ] U ( a )  IS) 

(6, q7, a/S"16,q,  a) = ( S Z ) ,  cos6cosq 

((. > o  = (al. la)). 

(6, q ,  a I ( ~ * ) ~ ( 6 ,  q ,  a) = ( ( S " ) ' ) ,  sin2@+ ((S') ' ) ,  cos26 (2.18) 

3. Equations of motion for spin chains in the squeezed spin basis 

3.1. Isotropic Heisenberg chain 

We consider now a one-dimensional isotropic quantum spin model described by the 
following Hamiltonian ( J  > 0) 
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The equations of motion for the spin operators read: 

id,S; = J [ ( S ; - ,  + Si,,)S,' - S;(S;-, + S,',,)] 

ia,S; = -(J/2)[(S;-, + S;+l)S,' - S;(Sz-l + S,',,)] 

( 3 . 2 ~ )  
(3.2b) 

where the Planck constant has been omitted. Similar to how it was done for Radcliffe 
spin coherent states (Balakrishnan and Bishop 1985), we make the following ansatz for 
the basis of spin squeeze states of the spin chain (3.1) 

n 

where a triplet of parameters On, cp,, a,, defines a sss for a single spin operator S ,  as 
described in 0 2. 

Taking diagonal matrix elements of equations (3.2) in the states (3.3) and going to 
the continuum limit ( S , )  -+ (S ( z ) )  (d  being the lattice constant) one obtains 

id,(S+) = Jd2[ (a , , (S ' ) ) (S+)  - (~2) (d22(S+)) l  (3.4) 
( 6 n ,  q n ,  an (S : l6n ,  q n , a n ) *  (6(2), q(2>,a(z)lSn(z)16(z>, q ( z ) ,  ~ ( 2 ) )  = ( S " )  where 

and an analogous equation for d,(S'). Of course the evolution of operator diagonal 
elements does not describe completely the evolution of the system's wavefunction, which 
for times t > 0 is a superposition of different coherent states even if for t = 0 it was 
represented by a single one. However, since the classical limit of the dynamical equations 
is completely obtained from the diagonal elements a description of the semi-classical 
(S + a) system within these states should be possible as long as the approach is applicable 
(namely E,(Z)  S,  compare with the discussion in 9 2). From (3.4), (2.18) and (2.15) 
dynamical equations for q ( z )  and 6(z )  may be obtained: 
cos6d,cp=JSd2{-(l - E,S-')[a,,i++ (d,q)'sin6cos6] + 2S-'(dzE1)dZ6} ( 3 . 5 ~ )  
d , 6 = J S d 2 { ( 1  - E1S-')[cos6d,,q - 2sin6(d2q)d,6] - 2s-' cosO(d,E,)d,cp) 

(3.5b) 
where El is given by (2.16). These are just the classical equations of motion for the 
Heisenberg spin chain with additional terms of the order of S-'.  To get an equation for 
El (which is a function of la1 only) one can use the identity 

which after time differentiation leads to 
- (S - E,)d ,E1 = (Sz)a,(S2) + Re((S-)d,(S+)). (3.7) 

Taking into account equations (3.5) and (3.2b) we get from (3.7) d r E l  = 0 from which it 
follows that /a /  = const. Thus in the case of the isotropic Heisenberg chain the initial 
deformation of the local spin states (e.g., squeezing) remains preserved for arbitrary 
times. When ia(z)l = const # 0 ( a  = 0 is the non-squeezed coherent spin state) we have 
just a renormalisation of a timescale in the classical equations (3.5). We shall see, 
however, that adding any anisotropy to the spin Hamiltonian leads to d t E l  # 0 and thus 
to a dynamical generation of squeezing of the local states. 

3.2. Anisotropic spin chain in the presence of a magneticfield 

Let us consider now an anisotropic quantum spin chain in the presence of the external 
magnetic field B: 
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Assuming that A > 0 we get an easy plane model that is often used to describe the quasi- 
one-dimensional ferromagnet CsNiF, (Mikeska 1978), while the case A < 0 and B = 0 
corresponds to the Ising symmetry. Similar to the isotropic Hamiltonian (3.1) one gets 
from (3.8) in the continuum limit 

a,(S+) = iJd2((SZ)a,,(S+) - (S+>d,,(S*>) + iA(S’S+ + S+S‘) + iB(S’> 

a,(Sz) = ( i~d~/2) ( (S+)d , , (S- )  - (S-)d,,(S+>) - B(Sr). 

From (3.7) and (3.9) we get after some algebra 

- C O S ~ ( S  - ~ ~ ) d , c p  = l d 2 { ( S  - El)’[[a, + (9’)’ sin6cos6] - 2(S - E l ) E ; 6 ’ )  

- A  sin(26)[(S - i)(S - 3E1) + $E2 - SEl  Re(a)/la12] 

- B(S - E , )  sin6cos6 

a,6= d2JS{(1 - EIS-l)[cos6cp” - 2qf6’sin6] - 2s-’ cos6E;q’ )  

- co tanqS  - E1)-’d ,El + B sinq - 2AS 

x cotan6Im(a) ( a ( - 2 E 1 / ( S  - E , )  

arEl = -2SA cos2@ E l  Im(a)/lul2 
and 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where E ,  and E2 are defined by (2.16) and a prime means a spatial derivative. Taking 
into account a semi-classical expression coming from (2.14) El(scl = laI2/(1 - laI2), we 
get from (3.12) 

(3.13) 

Putting into (3.10-3.11) the expression El(sc) and the semi-classical formula E2(sc) = 
El(sc) + 3E$,,) we see that equations (3.10-3.11) and (3.13) do not form together a 
complete set of equations because of a complex character of the squeeze parameter a. 
To obtain an evolution of the phase a of this parameter (a = tan-’[Im(a)/Re(a)]) we 
need to consider one more operator equation. Due to the symmetry of the Hamiltonian 
(3.8) it seems to be natural to choose ( S z ) 2  for this operator, however, we have not 
proved that every other choice would lead to the equivalent final results. From (3.8) we 
get 

a,((Si)2) = (Ji /2)((SiSi + SiS,+)(S;+, + 

d , l u  = -AScos26(1 - lai2) Im(a)/lal. 

- (S;Si + S;S,)(S,f+, + SJ-,))  
- B(S$SY, + SY,S’,). (3 .14~)  

Using (2.15) and (2.18) we obtain in the continuum limit of (3.144 

d,((S‘)’) = -Jd2[sin6cosq(2S - 1)(S - 3E1) + 3E2 - 2Sla/-*E1 Re(a)] 

X [2E; q‘ cos6 + 26’q’ sin6(S - E, )  - qf’ cos8(S - E , ) ]  

- 2S cos6 lal-2El Im(a){-cos6E; + 2E; @sin6  - (S - El)[@ sin6 

+ ( 6 ’ 1 2  cosq - ( q ’ ) 2 ( ~  - E , )  cosa + 2 d - y ~  - E , )  cos6}j 

- B{sinq sin6cosfl(S - 3E1)(2S - I) + 3E2 - 2SE1 cosa/la~] 

- cosq cos6  SE^ sina/(al}. (3.14b) 

However from (2.15) and (2.18) one also gets 

((S‘)’) = [ S 2  - (2s - l ) E l  + E,] sin2@ + cos2qS - E2 + (2s - l)El 
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+ 2S/a/-’ Re(a)E1]/2. (3.15) 

After longer algebra, combining (3.14b) and (3.15) and taking into account (3.10- 
3.13) we obtain in the semi-classical limit (2.14) up to the leading terms in S 

cos6d ,a  = 2JSd2[(q,’)2 cos6 + 8”sinO + (8’)’ cos6 - 2d-2   COS^] 
- 2AS c0s3ql  + cOsa(1 + l~l’)/(2I~l)] - 2B  COS^. (3.16) 

Combining equations (3.13) and (3.16) leads finally to 

a,a = 2 i { [ ( ~ ’ ) ~  + #’tan6 + (19’)~ld~JS - U S  - B cosq,/cos6}a 

- iAS cos2.9(1 + a)’. (3.17) 

Now we need to solve the system of equations (3.10-3.11) and (3.17). It is essential 
to see that neglecting in equations (3.10-3.11) all terms proportional to El/S, E2/S 
and their derivatives (which is allowed in the semi-classical approximation) we get 
classical equations of motion for the angles 6 and q, (compare, for example, with 
Etrich and Mikeska 1988) with no coupling to the squeeze parameter a. Moreover 
there are no spatial derivatives of this variable in equation (3.17). In this sense to 
solve approximately the system of equations (3.10-3.11,3.17) in the limit of S S 1 we 
can use classical solutions of (3.10-3.11) and simply put them into (3.17). For a fixed 
value of the z-coordinate the last equation becomes an ordinary differential equation 
for the variable a 

(3.18) 

where functions c ( z ,  t )  = [(cp’)’ + Wtanq, + (6’)2]d2JS - 2JS - B cosq,/cos6 and 
q ( z ,  t )  = AS cos’6can be treated as parameters depending only on the particular form 
of the solutions 8(z7 t) and q ( z ,  t )  but not on the squeeze variable a. When q(z ,  t )  is 
not identically equal to zero then using the transform (a,b)/b = (a + 1 - c/q)iq we 
get from (3.18) 

d,,b = ( ~ J w t v ) / v  + b[c(2rl - C) - i(d,C) + ic(drv)/71. (3.19) 
Depending on the behaviour of the functions ((2, t )  and q(z ,  t )  the last equation 
possesses different kinds of solutions that will be discussed for special cases in the next 
section. 

a,a(z, t) = 2iC(t, t )a(z,  t )  - iq(z, t) [I + a(z,  t)I2 

4. Stability analysis of the squeeze parameter equation of motion 

Equation (3.19) becomes much simpler 

d,,b = - 0 2 b  o2 = c ( C  - 217) 
if one considers the case of time-independent functions ((2) and q(z).  This is obviously 
fulfilled if the solutions for the angles 6 and q, are static. 

(i) Let us assume that A > 0 and B > 0. The well known exact solution of the 
classical limit of equations (3.10) and (3.11) has a form of a static sine-Gordon (sG) 
kink-soliton (Mikeska 1978) 

~ ( z ,  t )  = 4 tan-’[exp(mz)] 8(z7 t )  = 0 ( 4 . 2 ~ )  
with m2 = B/(JSd2). The corresponding stationary solution of equation (3.18) reads 

asol = - 1 - 2PA-l + 12A-l/cosh2(m~) + {[-1 - 2PA-l 
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1 2 3 1 2 3 

Figure 2. Dependence of rhe squeeze rotation frequency in presence of a static kink (4.3) 
on the position along the chain for A = 3 (a)  and A = 10 ( b )  and different values of B ,  
given on the curves ( w z  is normalised to its vacuum value, equation (4.4)). 

x m *z 

L 
m z  

+ 12A-'/c0~h'((m~)]* -l}'/' (4.2b) 

where /3 = 1 + 2JS/B = 1 - t - 2 / ( ~ z d ) ~  and A = 2AS/B are the parameters that control 
discreteness- and out-of-plane-effects, respectively. Due to the finite value of the 
easy-plane anisotropy the solution ( 4 . 2 ~ )  is stable against meridional (out-of-plane) 
distortions of the spin components only when B < B, = 2AS/3 (Kumar 1982, Magyari 
and Thomas 1982, Osano 1984). Using ( 4 . 2 ~ )  we get from (4.1): 

w2(z) = B ' [ ~ u ( z )  - /3] [ ~ u ( z )  - /3 - A] (4.3) 
where u(z) = l/cosh2(mz). From equation (4.3) we see that the stability condition 
w2(z) > 0 is automatically fulfilled for /zI -+ x because 

w i  = 02(? a) = B2/3(/3 + A )  (4.4) 
which corresponds to the stability of the ground state S = [S, 0.01 of the system (3.1). 
However as U E (0, 11 so for /3 < 6 in the presence of the kink ( 4 . 2 ~ )  there is a part 
of the chain where the spin motion is unstable to fluctuations of the variable b (figure 
2). It follows that for the magnetic field higher than BP = 2JS/5  there is an instability 
in the squeeze parameter, in the sense that liml.+&zl = 1 for some interval along 
the z-axis. For CsNiF3, which is often mapped to the Hamiltonian (3.1), there is 
A = 5 kB and J = 23.6 kB so for this material the critical field against squeeze 
parameter fluctuations is higher than the critical field against out-of-plane fluctuations 
BP = 2.8 B,. 

For time-dependent functions c ( z ,  t )  and q(z, t )  corresponding to time-dependent 
solutions ~ ( z ,  t )  and 6(z, t )  the analysis of equation (3.19) becomes more complicated. 
One can however easily see that the quasi-classical solutions of equations (3 .m3.11)  
in a form of usual low-amplitude spin waves do not lead to the occurrence of any 
instability in equation (3.19) because in such a case leading terms in this equation 
come from the stable ground state of the system (3.1). 

(ii) We assume now that the Hamiltonian (3.1) possesses an Ising-like symmetry, 
e.g., we put A < 0 and B = 0. In such a case the exact static solution of the classical 
limit of equations (3.10-3.11) has a form of the following kink-soliton: 

q (z ,  t )  = qo  = constant 

flz, t )  = tan-'{sinh[~(21Al)'/~/(d~J) '/*I}. 
(4.5) 

(4.6) 
This solution is always stable against any small perturbations in 6 and Q, (Tjon and 
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Wright 1977). Instead of equation (4.3) we now have 

O y z )  = (WS)2[1 + y - 3yu(z)][l + y - 2yu(z)] 

u(z)  = l / {~osh~[ (2y)~ /~z /d ]}  Y = /A/ /J .  (4.7) 
Obviously the instability of the b and a parameters occurs for (1 + y)3y < 1, e.g., for 
IAl > lAc/ = J/2. Results on the absolute stability of the ground state S = [0, 0, +-SI 
and on the stability of the small-amplitude spin waves are similar to those for the 
previously analysed easy-plane chain. 

One has to notice that in both considered cases (i) and (ii) the instability of the 
squeeze parameter appears when the effective kink width is smaller than some critical 
value. In fact, writing solution ( 4 . 2 ~ )  as q /2  = n/2 - tan-'[sinh(2z/Al)] we get for 
the critical width A; = 1O1I2d, while for the solution (4.6) there is a corresponding 
value A$ = 2d. Note that the critical values of the kink width are of the order of the 
lattice constant d and close to the classical instability of the static soliton versus 
discreteness effects (Etrich et a1 1985). Hence, for a complete understanding of the 
semi-classical instability in the squeeze parameter and its interplay with the classical 
one the discrete equations of motion for the system (3.8) should be analysed in the 
spin-squeezed state approach. 

5. Quantum corrections to the soliton energy 

For a comparison of the extended spin-coherent approach with different treatments 
of quantum spin chains in the semi-classical regime we now want to calculate the 
energy of the semi-classical soliton solution, Le., 

E,  = ( ~ s o 1 l H l ~ s o J  - ( V v a c I H l V v a c )  (5.1) 
with Iqi) = II,lqt, St, a i ) ) ,  a:] as given by equation (4.2b) and 

n (1 + 2 p / 4  + [ (1 + 2P/A)2 - 11 1'2 (5.2) avac  E - 

being the corresponding solution for the classical vacuum state (p  and A as given in 
§ 4). Performing the continuum limit and taking corrections of order 1/S only we find 
for the easy-plane anisotropic chain (equation (3.8) with A > 0): 

+ (A/2S)[4 + El (1 + Re(a)//a12)] - (1 - El/S) cosq} (5.3) 

for solutions with 6s 0 which we consider here. The 1/S corrections in cp (see equation 
(3.10)) contribute to second order in 1/S only since the classical soliton solution 
minimises the energy functional. With (5.3) the energy of the static sG soliton is given 
to o(l/S) by (the classical soliton energy is E: = 8S(JBS)'l2): 

Is - 1 0  = dlj  [ (p  + A/2)(EY1 - E y )  + (A/2)(Ey1/~so1 - E;ac/~vac) 

- 6Ey' sech21j] 
J 

(5.4) 

(5 .5)  
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( E  = mz). We will now consider this expression in several limiting cases for the 
parameters il and 8: 

1: In this case El may be replaced by a2 and we have from 
equations (4.2b) and (5.2): 

(i) /3 >> A ,  i.e., a(') 

avac = - 4 ( l  + 2plIL-l 

p l - -  -&[I + 2@//2 - (12/A) sech21j]-' = avac[l - (24/A)uvac sech21j]. 

Inserting this in the expression for the semi-classical soliton energy (5.4) we find: 

E, Eg'[1 - (3/64S)(A/P)2(1 - il//3)]. (5.7) 
(ii) S 2  %- A/p >> 1 (planar limit). (Note that the limit A/P+ requires the limit 

S -+ r: to be taken first because otherwise the classical vacuum solution becomes 
unstable, i.e., E ,  o(S).) For this range of parameters we have a(') = -1 + E, which 
gives 

Using il/p >> 1 now we find 
El = 1/2e E,/u 1: - 1 / 2 ~  = -El.  (5 .8)  

avac = -1 + 2(/3/A)"2 
asol - - - 1 + 2[(p - 6 ~ech~l j ) / i l ] ' /~  

(5.9a) 

(5.9b) 

giving the following result for the renormalised energy of the quantum soliton: 

Es = + g 2 m 1  (5.10) 

where g 2  = (2A/JS2)'/2 = [2A/(/3 - 1)]1/2/S is the relevant parameter for the effects of 
quantum fluctuations in the planar regime (Mikeska 1982) and 

f ( p )  = B[(p - 1)/2]1/2 I d c  [d/3 - (/3 - 6 ~ e c h ~ E ) l / ~ ] ,  (5.11) 

This expression may be evaluated for different values of /3 (which controls the influence 
of lattice effects in our approach). 

(i) In the continuum limit (@+ r:) (5.10) gives: 

E,  = E?[1 - (3/16V2)g2]. (5.12) 

(ii) For /3 = 6, i.e., the value where the semi-classical instability (see § 4) occurs, 

(5.13) 

(iii) For intermediate values of p equation (5.11) can be integrated numerically, 
where a monotonous decrease off with /3 is found. 

Equations (5.12) and (5.13) can now be compared with the results of Mikeska 
(1982) who has investigated the system (3.10) by means of WKB quantisation of the 
classical soliton solution in a corresponding field theory. Using an expansion about 
the planar continuum limit he found for the renormalised soliton energy in the semi- 
classical limit E = Eb](l - (g2/8n)[l - o(A)]}. Comparing this result with equation 
(5.12) which should be valid in the same range of parameters we find that our estimate 
of the quantum corrections is larger by a factor of -3.3 than that given by Mikeska. 
This discrepancy may be a consequence of differences in the way the various limiting 

the renormalised soliton energy is given by 

Es = E t [ 1  - (d15/16) (In 2) g2 ] .  
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processes (S-m,  A+ m, /3+ m) are performed to obtain equation (5.12) and in 
the field-theoretical treatment by Mikeska. While the dependence on the single 
dimensionless parameter g2 in equation (5.12) is the result of a limiting process 
controlled by S 2  % A/b % 1 no such restriction had to be implied explicitly in Mikeska's 
work. On the other hand, the field-theoretical result might contain contributions by 
modes neglected in the squeezed-state approach presented in this work. 

6. Summary and discussion 

The approach developed in the present work forms an extension of the Radcliffe spin- 
coherent states method by introduction of spin-squeezed states analogous to squeezed 
states of a quantum harmonic oscillator. As a result in the quasi-classical limit one 
obtains a system of three coupled equations describing the evolution of a spin vector 
direction and a value of the complex squeeze parameter a. The equations for the 
spherical angles possess a classical form with S-' corrections coming from the non- 
zero values of the parameter a. The squeezing causes the variances ( ~ l ( S " ) ~ ( a )  and 
( ~ l ( S Y ) ~ l a )  of spin components perpendicular to the quantisation axis to be different 
from the standard coherent state value S/2. For small values of the squeeze parameter 
the product of these variances is a constant as for harmonic oscillator squeezed states. 
The spin squeezing also influences (diminishes) the expected value of the S' component 
and its quadrature. 

The 'ansatz' has been applied to spin chains with different symmetries using as a 
basis a set of products of single spin-squeezed states. We have shown that an isotropic 
Heisenberg chain in the presence of a magnetic field is characterised by a rotation of 
a phase of the squeeze parameter (besides the usual Larmor precession). No changes 
in the modulus of this parameter are present in such a case. The squeeze phase rotation 
occurs even for the state of a uniform magnetisation of the isotropic Heisenberg chain. 

Very interesting effects occur for an anisotropic Heisenberg chain where the 
modulus of the squeeze parameter is not a constant of motion. Using the equation for 
d,((Sz)2) as an additional evolution equation we obtained a complete set of equations 
for the spherical angles and the squeeze parameter. We carefully examined the 
evolution of this parameter when the spherical angles describe the static kink-soliton 
solution. For the easy-plane ferromagnet with the in-plane magnetic field there is an 
instability of the squeeze parameter for spins belonging to some part of the chain in 
the neighbourhood of a kink centre. This instability occurs when the field is too high 
compared with the value of the exchange constant and it is independent of the classical 
out-of-plane instability. For the classically stable kinks in an easy-axis chain (with no 
magnetic field) a similar squeeze instability occurs when the anisotropy parameter is 
too large compared with the exchange constant. Thus in both of these cases the 
instability occurs when kinks are too narrow compared with a lattice constant value. 
No instability occurs for the classical ground states and for the low-amplitude spin 
waves in these chains. 

In addition our approach allows for a calculation of quantum corrections to the 
soliton energy that were in part studied before for an easy-plane ferromagnet using 
the WKB method (Mikeska 1982). Depending on the ratios of the anisotropy and 
exchange parameters to the magnitude of the in-plane magnetic field we got several 
analytical results for these corrections. A certain difference between some of our 
results and those obtained by WKB method can be understood as a consequence of the 
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different ways the continuum limits were performed. 
We leave open the question on the possibilities of an experimental generation and 

detection of the spin-squeezed states (and effects connected with them) by just 
mentioning interesting experiments on squeezed states of light (Pike and Sarkar 1986) 
performed in recent years. 
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